LOYOLA COLLEGE (AUTONOMOUS) CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **CHEMISTRY**

SECOND SEMESTER – APRIL 2025

UCH2MC02 - CHEMICAL BONDING AND MAIN GROUP ELEMENTS

Date: 29-04-2025	Dept. No.	Max. : 100 Marks
Time: $0.000 \Delta M = 1.000 DM$		

		SECTION A - K1 & K2 (CO1)			
Q.No	Levels	Answer ALL the Questions $(10 \times 2 = 20)$			
1		What are the factors favouring an ionic bond formation?			
2		Alkali metals form stable complexes with polydentate ligands. Give an example.			
3	IZ 1	Draw the unit cell of CsCl.			
4	K1	What is carborundum? Mention any one of its application.			
5		Why CO ₂ is a gas and SiO ₂ is a solid?			
6		Outline the preparation of XeF ₆ .			
7	***	Write the Born–Lande equation and mention the terms involved in it.			
8	K2	Name the carbonates and bicarbonates of sodium.			
9		Why are Tl(I) compounds more stable than Tl(III) compounds?			
10		Find the oxidation state of P in H ₃ PO ₂ and H ₃ PO ₃ .			
SECTION B – K3 & K4 (CO2)					
		Answer ALL the Questions $(4 \times 10 = 40)$			
11		Explain the following			
		a) Ionic compounds are soluble in polar solvents and having high dielectric constant.			
		b) Ionic compounds have higher melting point than covalent compounds. (5+5)			
		[OR]			
12		Calculate the lattice energy of KCl from the following data. Construct the Born Haber's Cycle			
		for the formation of KCl.			
		Heat of formation of KC1 = -438 kJ mol^{-1}			
		Heat of sublimation of KCl = $+ 86 \text{ kJ mol}^{-1}$			
	K3	Heat of dissociation of $Cl_2 = +244 \text{ kJ mol}^{-1}$			
		Ionization energy of $K = +425 \text{ kJ mol}^{-1}$			
		Electron affinity of $Cl(g) = -355 \text{ kJ mol}^{-1}$			
13		a) Differentiate between the cubic close packing and hexagonal close packing of spheres.			
		b) Discuss the wurtzite crystal structure of ZnS. (5+5)			
		[OR]			
14		a) Explain nonstoichiometric defects in crystals and their consequences.			
		b) Discuss the biological importance of alkali metals. (5+5)			
15		Describe the chemistry of the oxides of nitrogen.			
		[OR]			
16	K4	Using VBT, examine the structure of XeF ₂ and XeF ₆ .			
17	127	Discuss the extraction of beryllium.			
		[OR]			
18		a) List the two and three-dimensional silicates providing an example each. Draw the structure			
	of sheet silicates.				
		b) Explain the oxidation state and strength of H ₃ PO ₂ , H ₃ PO ₃ and H ₃ PO ₄ . (6+4)			

	SECTION C – K5 & K6 (CO3)				
	Answer ALL the Questions (2 x 20 = 40)				
19		a) Deduce the characteristics of ionic compounds. (10+10)			
	K5	b) Explain the following giving reasons.			
		i) LiF has higher lattice energy than LiI.			
		ii) degree of hydration of alkali metals decreases from Li ⁺ to Cs ⁺ .			
		[OR]			
20		State Fajans' rule. Explain the covalent character in ionic compounds using Fajan's rule.			
21		a) Discuss the structure and bonding of diborane. (10+10)			
	K6	b) Give a comparative account of salt-like, interstitial and covalent carbides.			
		[OR]			
22		a) Review the position of noble gases in the periodic table and explain the properties. (10+10)			
		b) Evaluate the anomalous behaviour of Li and Be from the other group I and II elements.			
